Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 17 de 17
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
arxiv; 2024.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2401.03390v1

Résumé

During the COVID-19 pandemic, a major driver of new surges has been the emergence of new variants. When a new variant emerges in one or more countries, other nations monitor its spread in preparation for its potential arrival. The impact of the variant and the timing of epidemic peaks in a country highly depend on when the variant arrives. The current methods for predicting the spread of new variants rely on statistical modeling, however, these methods work only when the new variant has already arrived in the region of interest and has a significant prevalence. The question arises: Can we predict when (and if) a variant that exists elsewhere will arrive in a given country and reach a certain prevalence? We propose a variant-dynamics-informed Graph Neural Network (GNN) approach. First, We derive the dynamics of variant prevalence across pairs of regions (countries) that applies to a large class of epidemic models. The dynamics suggest that ratios of variant proportions lead to simpler patterns. Therefore, we use ratios of variant proportions along with some parameters estimated from the dynamics as features in a GNN. We develop a benchmarking tool to evaluate variant emergence prediction over 87 countries and 36 variants. We leverage this tool to compare our GNN-based approach against our dynamics-only model and a number of machine learning models. Results show that the proposed dynamics-informed GNN method retrospectively outperforms all the baselines, including the currently pervasive framework of Physics-Informed Neural Networks (PINNs) that incorporates the dynamics in the loss function.


Sujets)
COVID-19
2.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.10.26.23297581

Résumé

ImportanceCOVID-19 continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. ObjectiveTo project COVID-19 hospitalizations and deaths from April 2023-April 2025 under two plausible assumptions about immune escape (20% per year and 50% per year) and three possible CDC recommendations for the use of annually reformulated vaccines (no vaccine recommendation, vaccination for those aged 65+, vaccination for all eligible groups). DesignThe COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023-April 15, 2025 under six scenarios representing the intersection of considered levels of immune escape and vaccination. State and national projections from eight modeling teams were ensembled to produce projections for each scenario. SettingThe entire United States. ParticipantsNone. ExposureAnnually reformulated vaccines assumed to be 65% effective against strains circulating on June 15 of each year and to become available on September 1. Age and state specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. Main outcomes and measuresEnsemble estimates of weekly and cumulative COVID-19 hospitalizations and deaths. Expected relative and absolute reductions in hospitalizations and deaths due to vaccination over the projection period. ResultsFrom April 15, 2023-April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November-January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% PI: 1,438,000-4,270,000) hospitalizations and 209,000 (90% PI: 139,000-461,000) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% CI: 104,000-355,000) fewer hospitalizations and 33,000 (95% CI: 12,000-54,000) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI: 29,000-69,000) fewer deaths. Conclusion and RelevanceCOVID-19 is projected to be a significant public health threat over the coming two years. Broad vaccination has the potential to substantially reduce the burden of this disease. Key pointsO_ST_ABSQuestionC_ST_ABSWhat is the likely impact of COVID-19 from April 2023-April 2025 and to what extent can vaccination reduce hospitalizations and deaths? FindingsUnder plausible assumptions about viral evolution and waning immunity, COVID-19 will likely cause annual epidemics peaking in November-January over the two-year projection period. Though significant, hospitalizations and deaths are unlikely to reach levels seen in previous winters. The projected health impacts of COVID-19 are reduced by 10-20% through moderate use of reformulated vaccines. MeaningCOVID-19 is projected to remain a significant public health threat. Annual vaccination can reduce morbidity, mortality, and strain on health systems.


Sujets)
COVID-19
3.
arxiv; 2023.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2307.06643v2

Résumé

Indirect surveys, in which respondents provide information about other people they know, have been proposed for estimating (nowcasting) the size of a \emph{hidden population} where privacy is important or the hidden population is hard to reach. Examples include estimating casualties in an earthquake, conditions among female sex workers, and the prevalence of drug use and infectious diseases. The Network Scale-up Method (NSUM) is the classical approach to developing estimates from indirect surveys, but it was designed for one-shot surveys. Further, it requires certain assumptions and asking for or estimating the number of individuals in each respondent's network. In recent years, surveys have been increasingly deployed online and can collect data continuously (e.g., COVID-19 surveys on Facebook during much of the pandemic). Conventional NSUM can be applied to these scenarios by analyzing the data independently at each point in time, but this misses the opportunity of leveraging the temporal dimension. We propose to use the responses from indirect surveys collected over time and develop analytical tools (i) to prove that indirect surveys can provide better estimates for the trends of the hidden population over time, as compared to direct surveys and (ii) to identify appropriate temporal aggregations to improve the estimates. We demonstrate through extensive simulations that our approach outperforms traditional NSUM and direct surveying methods. We also empirically demonstrate the superiority of our approach on a real indirect survey dataset of COVID-19 cases.


Sujets)
COVID-19
4.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.06.28.23291998

Résumé

Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.


Sujets)
COVID-19
5.
Velma Lopez; Estee Y Cramer; Robert Pagano; John M Drake; Eamon B O'Dea; Benjamin P Linas; Turgay Ayer; Jade Xiao; Madeline Adee; Jagpreet Chhatwal; Mary A Ladd; Peter P Mueller; Ozden O Dalgic; Johannes Bracher; Tilmann Gneiting; Anja Mühlemann; Jarad Niemi; Ray L Evan; Martha Zorn; Yuxin Huang; Yijin Wang; Aaron Gerding; Ariane Stark; Dasuni Jayawardena; Khoa Le; Nutcha Wattanachit; Abdul H Kanji; Alvaro J Castro Rivadeneira; Sen Pei; Jeffrey Shaman; Teresa K Yamana; Xinyi Li; Guannan Wang; Lei Gao; Zhiling Gu; Myungjin Kim; Lily Wang; Yueying Wang; Shan Yu; Daniel J Wilson; Samuel R Tarasewicz; Brad Suchoski; Steve Stage; Heidi Gurung; Sid Baccam; Maximilian Marshall; Lauren Gardner; Sonia Jindal; Kristen Nixon; Joseph C Lemaitre; Juan Dent; Alison L Hill; Joshua Kaminsky; Elizabeth C Lee; Justin Lessler; Claire P Smith; Shaun Truelove; Matt Kinsey; Katharine Tallaksen; Shelby Wilson; Luke C Mullany; Lauren Shin; Kaitlin Rainwater-Lovett; Dean Karlen; Lauren Castro; Geoffrey Fairchild; Isaac Michaud; Dave Osthus; Alessandro Vespignani; Matteo Chinazzi; Jessica T Davis; Kunpeng Mu; Xinyue Xiong; Ana Pastore y Piontti; Shun Zheng; Zhifeng Gao; Wei Cao; Jiang Bian; Chaozhuo Li; Xing Xie; Tie-Yan Liu; Juan Lavista Ferres; Shun Zhang; Robert Walraven; Jinghui Chen; Quanquan Gu; Lingxiao Wang; Pan Xu; Weitong Zhang; Difan Zou; Graham Casey Gibson; Daniel Sheldon; Ajitesh Srivastava; Aniruddha Adiga; Benjamin Hurt; Gursharn Kaur; Bryan Lewis; Madhav Marathe; Akhil S Peddireddy; Przemyslaw Porebski; Srinivasan Venkatramanan; Lijing Wang; Pragati V Prasad; Alexander E Webber; Jo W Walker; Rachel B Slayton; Matthew Biggerstaff; Nicholas G Reich; Michael A Johansson.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.05.30.23290732

Résumé

During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1-4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naive baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making. Author SummaryAs SARS-CoV-2 began to spread throughout the world in early 2020, modelers played a critical role in predicting how the epidemic could take shape. Short-term forecasts of epidemic outcomes (for example, infections, cases, hospitalizations, or deaths) provided useful information to support pandemic planning, resource allocation, and intervention. Yet, infectious disease forecasting is still a nascent science, and the reliability of different types of forecasts is unclear. We retrospectively evaluated COVID-19 case forecasts, which were often unreliable. For example, forecasts did not anticipate the speed of increase in cases in early winter 2020. This analysis provides insights on specific problems that could be addressed in future research to improve forecasts and their use. Identifying the strengths and weaknesses of forecasts is critical to improving forecasting for current and future public health responses.


Sujets)
COVID-19 , Mort , Maladies transmissibles
6.
arxiv; 2022.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2209.04035v2

Résumé

Infectious disease forecasting for ongoing epidemics has been traditionally performed, communicated, and evaluated as numerical targets - 1, 2, 3, and 4 week ahead cases, deaths, and hospitalizations. While there is great value in predicting these numerical targets to assess the burden of the disease, we argue that there is also value in communicating the future trend (description of the shape) of the epidemic -- for instance, if the cases will remain flat or a surge is expected. To ensure what is being communicated is useful we need to be able to evaluate how well the predicted shape matches with the ground truth shape. Instead of treating this as a classification problem (one out of $n$ shapes), we define a transformation of the numerical forecasts into a ``shapelet''-space representation. In this representation, each dimension corresponds to the similarity of the shape with one of the shapes of interest (a shapelet). We prove that this representation satisfies the property that two shapes that one would consider similar are mapped close to each other, and vice versa. We demonstrate that our representation is able to reasonably capture the trends in COVID-19 cases and deaths time-series. With this representation, we define an evaluation measure and a measure of agreement among multiple models. We also define the shapelet-space ensemble of multiple models as the mean of their shapelet-space representations. We show that this ensemble is able to accurately predict the shape of the future trend for COVID-19 cases and trends. We also show that the agreement between models can provide a good indicator of the reliability of the forecast.


Sujets)
COVID-19 , Mort
7.
arxiv; 2022.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2207.02919v2

Résumé

We proposed the SIkJalpha model at the beginning of the COVID-19 pandemic (early 2020). Since then, as the pandemic evolved, more complexities were added to capture crucial factors and variables that can assist with projecting desired future scenarios. Throughout the pandemic, multi-model collaborative efforts have been organized to predict short-term outcomes (cases, deaths, and hospitalizations) of COVID-19 and long-term scenario projections. We have been participating in five such efforts. This paper presents the evolution of the SIkJalpha model and its many versions that have been used to submit to these collaborative efforts since the beginning of the pandemic. Specifically, we show that the SIkJalpha model is an approximation of a class of epidemiological models. We demonstrate how the model can be used to incorporate various complexities, including under-reporting, multiple variants, waning of immunity, and contact rates, and to generate probabilistic outputs.


Sujets)
COVID-19
8.
Katharine Sherratt; Hugo Gruson; Rok Grah; Helen Johnson; Rene Niehus; Bastian Prasse; Frank Sandman; Jannik Deuschel; Daniel Wolffram; Sam Abbott; Alexander Ullrich; Graham Gibson; Evan L Ray; Nicholas G Reich; Daniel Sheldon; Yijin Wang; Nutcha Wattanachit; Lijing Wang; Jan Trnka; Guillaume Obozinski; Tao Sun; Dorina Thanou; Loic Pottier; Ekaterina Krymova; Maria Vittoria Barbarossa; Neele Leithauser; Jan Mohring; Johanna Schneider; Jaroslaw Wlazlo; Jan Fuhrmann; Berit Lange; Isti Rodiah; Prasith Baccam; Heidi Gurung; Steven Stage; Bradley Suchoski; Jozef Budzinski; Robert Walraven; Inmaculada Villanueva; Vit Tucek; Martin Smid; Milan Zajicek; Cesar Perez Alvarez; Borja Reina; Nikos I Bosse; Sophie Meakin; Pierfrancesco Alaimo Di Loro; Antonello Maruotti; Veronika Eclerova; Andrea Kraus; David Kraus; Lenka Pribylova; Bertsimas Dimitris; Michael Lingzhi Li; Soni Saksham; Jonas Dehning; Sebastian Mohr; Viola Priesemann; Grzegorz Redlarski; Benjamin Bejar; Giovanni Ardenghi; Nicola Parolini; Giovanni Ziarelli; Wolfgang Bock; Stefan Heyder; Thomas Hotz; David E. Singh; Miguel Guzman-Merino; Jose L Aznarte; David Morina; Sergio Alonso; Enric Alvarez; Daniel Lopez; Clara Prats; Jan Pablo Burgard; Arne Rodloff; Tom Zimmermann; Alexander Kuhlmann; Janez Zibert; Fulvia Pennoni; Fabio Divino; Marti Catala; Gianfranco Lovison; Paolo Giudici; Barbara Tarantino; Francesco Bartolucci; Giovanna Jona Lasinio; Marco Mingione; Alessio Farcomeni; Ajitesh Srivastava; Pablo Montero-Manso; Aniruddha Adiga; Benjamin Hurt; Bryan Lewis; Madhav Marathe; Przemyslaw Porebski; Srinivasan Venkatramanan; Rafal Bartczuk; Filip Dreger; Anna Gambin; Krzysztof Gogolewski; Magdalena Gruziel-Slomka; Bartosz Krupa; Antoni Moszynski; Karol Niedzielewski; Jedrzej Nowosielski; Maciej Radwan; Franciszek Rakowski; Marcin Semeniuk; Ewa Szczurek; Jakub Zielinski; Jan Kisielewski; Barbara Pabjan; Kirsten Holger; Yuri Kheifetz; Markus Scholz; Marcin Bodych; Maciej Filinski; Radoslaw Idzikowski; Tyll Krueger; Tomasz Ozanski; Johannes Bracher; Sebastian Funk.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.06.16.22276024

Résumé

Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported from a standardised source over the next one to four weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models past predictive performance. Results: Over 52 weeks we collected and combined up to 28 forecast models for 32 countries. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 84% of participating models forecasts of incident cases (with a total N=862), and 92% of participating models forecasts of deaths (N=746). Across a one to four week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over four weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than two weeks.


Sujets)
COVID-19 , Mort , Maladies transmissibles
9.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.03.08.22271905

Résumé

Background: SARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains. Methods: Nine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of: 1) presence vs. absence of vaccination of children ages 5-11 years starting on November 1, 2021; and 2) continued dominance of the Delta variant vs. emergence of a hypothetical more transmissible variant on November 15, 2021. Individual team projections were combined using linear pooling. The effect of childhood vaccination on overall and age-specific outcomes was estimated by meta-analysis approaches. Findings: Absent a new variant, COVID-19 cases, hospitalizations, and deaths among all ages were projected to decrease nationally through mid-March 2022. Under a set of specific assumptions, models projected that vaccination of children 5-11 years old was associated with reductions in all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios where children were not vaccinated. This projected effect of vaccinating children 5-11 years old increased in the presence of a more transmissible variant, assuming no change in vaccine effectiveness by variant. Larger relative reductions in cumulative cases, hospitalizations, and deaths were observed for children than for the entire U.S. population. Substantial state-level variation was projected in epidemic trajectories, vaccine benefits, and variant impacts. Conclusions: Results from this multi-model aggregation study suggest that, under a specific set of scenario assumptions, expanding vaccination to children 5-11 years old would provide measurable direct benefits to this age group and indirect benefits to the all-age U.S. population, including resilience to more transmissible variants.


Sujets)
COVID-19
10.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.11.05.21265810

Résumé

We report on the second and final part of a pre-registered forecasting study on COVID-19 cases and deaths in Germany and Poland. Fifteen independent research teams provided forecasts at lead times of one through four weeks from January through mid-April 2021. Compared to the first part (October--December 2020), the number of participating teams increased, and a number of teams started providing subnational-level forecasts. The addressed time period is characterized by rather stable non-pharmaceutical interventions in both countries, making short-term predictions more straightforward than in the first part of our study. In both countries, case counts declined initially, before rebounding due to the rise of the B.1.1.7 variant. Deaths declined through most of the study period in Germany while in Poland they increased after a prolonged plateau. Many, though not all, models outperformed a simple baseline model up to four weeks ahead, with ensemble methods showing very good relative performance. Major trend changes in reported cases, however, remained challenging to predict.


Sujets)
COVID-19
11.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.08.28.21262748

Résumé

What is already known about this topic?The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July--December 2021. What is added by this report?Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July--December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. What are the implications for public health practice?Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen.


Sujets)
COVID-19 , Mort
12.
Estee Y Cramer; Evan L Ray; Velma K Lopez; Johannes Bracher; Andrea Brennen; Alvaro J Castro Rivadeneira; Aaron Gerding; Tilmann Gneiting; Katie H House; Yuxin Huang; Dasuni Jayawardena; Abdul H Kanji; Ayush Khandelwal; Khoa Le; Anja Muhlemann; Jarad Niemi; Apurv Shah; Ariane Stark; Yijin Wang; Nutcha Wattanachit; Martha W Zorn; Youyang Gu; Sansiddh Jain; Nayana Bannur; Ayush Deva; Mihir Kulkarni; Srujana Merugu; Alpan Raval; Siddhant Shingi; Avtansh Tiwari; Jerome White; Spencer Woody; Maytal Dahan; Spencer Fox; Kelly Gaither; Michael Lachmann; Lauren Ancel Meyers; James G Scott; Mauricio Tec; Ajitesh Srivastava; Glover E George; Jeffrey C Cegan; Ian D Dettwiller; William P England; Matthew W Farthing; Robert H Hunter; Brandon Lafferty; Igor Linkov; Michael L Mayo; Matthew D Parno; Michael A Rowland; Benjamin D Trump; Sabrina M Corsetti; Thomas M Baer; Marisa C Eisenberg; Karl Falb; Yitao Huang; Emily T Martin; Ella McCauley; Robert L Myers; Tom Schwarz; Daniel Sheldon; Graham Casey Gibson; Rose Yu; Liyao Gao; Yian Ma; Dongxia Wu; Xifeng Yan; Xiaoyong Jin; Yu-Xiang Wang; YangQuan Chen; Lihong Guo; Yanting Zhao; Quanquan Gu; Jinghui Chen; Lingxiao Wang; Pan Xu; Weitong Zhang; Difan Zou; Hannah Biegel; Joceline Lega; Timothy L Snyder; Davison D Wilson; Steve McConnell; Yunfeng Shi; Xuegang Ban; Robert Walraven; Qi-Jun Hong; Stanley Kong; James A Turtle; Michal Ben-Nun; Pete Riley; Steven Riley; Ugur Koyluoglu; David DesRoches; Bruce Hamory; Christina Kyriakides; Helen Leis; John Milliken; Michael Moloney; James Morgan; Gokce Ozcan; Chris Schrader; Elizabeth Shakhnovich; Daniel Siegel; Ryan Spatz; Chris Stiefeling; Barrie Wilkinson; Alexander Wong; Sean Cavany; Guido Espana; Sean Moore; Rachel Oidtman; Alex Perkins; Zhifeng Gao; Jiang Bian; Wei Cao; Juan Lavista Ferres; Chaozhuo Li; Tie-Yan Liu; Xing Xie; Shun Zhang; Shun Zheng; Alessandro Vespignani; Matteo Chinazzi; Jessica T Davis; Kunpeng Mu; Ana Pastore y Piontti; Xinyue Xiong; Andrew Zheng; Jackie Baek; Vivek Farias; Andreea Georgescu; Retsef Levi; Deeksha Sinha; Joshua Wilde; Nicolas D Penna; Leo A Celi; Saketh Sundar; Dave Osthus; Lauren Castro; Geoffrey Fairchild; Isaac Michaud; Dean Karlen; Elizabeth C Lee; Juan Dent; Kyra H Grantz; Joshua Kaminsky; Kathryn Kaminsky; Lindsay T Keegan; Stephen A Lauer; Joseph C Lemaitre; Justin Lessler; Hannah R Meredith; Javier Perez-Saez; Sam Shah; Claire P Smith; Shaun A Truelove; Josh Wills; Matt Kinsey; RF Obrecht; Katharine Tallaksen; John C. Burant; Lily Wang; Lei Gao; Zhiling Gu; Myungjin Kim; Xinyi Li; Guannan Wang; Yueying Wang; Shan Yu; Robert C Reiner; Ryan Barber; Emmanuela Gaikedu; Simon Hay; Steve Lim; Chris Murray; David Pigott; B. Aditya Prakash; Bijaya Adhikari; Jiaming Cui; Alexander Rodriguez; Anika Tabassum; Jiajia Xie; Pinar Keskinocak; John Asplund; Arden Baxter; Buse Eylul Oruc; Nicoleta Serban; Sercan O Arik; Mike Dusenberry; Arkady Epshteyn; Elli Kanal; Long T Le; Chun-Liang Li; Tomas Pfister; Dario Sava; Rajarishi Sinha; Thomas Tsai; Nate Yoder; Jinsung Yoon; Leyou Zhang; Sam Abbott; Nikos I I Bosse; Sebastian Funk; Joel Hellewell; Sophie R Meakin; James D Munday; Katharine Sherratt; Mingyuan Zhou; Rahi Kalantari; Teresa K Yamana; Sen Pei; Jeffrey Shaman; Turgay Ayer; Madeline Adee; Jagpreet Chhatwal; Ozden O Dalgic; Mary A Ladd; Benjamin P Linas; Peter Mueller; Jade Xiao; Michael L Li; Dimitris Bertsimas; Omar Skali Lami; Saksham Soni; Hamza Tazi Bouardi; Yuanjia Wang; Qinxia Wang; Shanghong Xie; Donglin Zeng; Alden Green; Jacob Bien; Addison J Hu; Maria Jahja; Balasubramanian Narasimhan; Samyak Rajanala; Aaron Rumack; Noah Simon; Ryan Tibshirani; Rob Tibshirani; Valerie Ventura; Larry Wasserman; Eamon B O'Dea; John M Drake; Robert Pagano; Jo W Walker; Rachel B Slayton; Michael Johansson; Matthew Biggerstaff; Nicholas G Reich.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.02.03.21250974

Résumé

Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. In 2020, the COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized hundreds of thousands of specific predictions from more than 50 different academic, industry, and independent research groups. This manuscript systematically evaluates 23 models that regularly submitted forecasts of reported weekly incident COVID-19 mortality counts in the US at the state and national level. One of these models was a multi-model ensemble that combined all available forecasts each week. The performance of individual models showed high variability across time, geospatial units, and forecast horizons. Half of the models evaluated showed better accuracy than a naive baseline model. In combining the forecasts from all teams, the ensemble showed the best overall probabilistic accuracy of any model. Forecast accuracy degraded as models made predictions farther into the future, with probabilistic accuracy at a 20-week horizon more than 5 times worse than when predicting at a 1-week horizon. This project underscores the role that collaboration and active coordination between governmental public health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks. f


Sujets)
COVID-19
13.
arxiv; 2021.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2102.02842v1

Résumé

During the COVID-19 pandemic, a significant effort has gone into developing ML-driven epidemic forecasting techniques. However, benchmarks do not exist to claim if a new AI/ML technique is better than the existing ones. The "covid-forecast-hub" is a collection of more than 30 teams, including us, that submit their forecasts weekly to the CDC. It is not possible to declare whether one method is better than the other using those forecasts because each team's submission may correspond to different techniques over the period and involve human interventions as the teams are continuously changing/tuning their approach. Such forecasts may be considered "human-expert" forecasts and do not qualify as AI/ML approaches, although they can be used as an indicator of human expert performance. We are interested in supporting AI/ML research in epidemic forecasting which can lead to scalable forecasting without human intervention. Which modeling technique, learning strategy, and data pre-processing technique work well for epidemic forecasting is still an open problem. To help advance the state-of-the-art AI/ML applied to epidemiology, a benchmark with a collection of performance points is needed and the current "state-of-the-art" techniques need to be identified. We propose EpiBench a platform consisting of community-driven benchmarks for AI/ML applied to epidemic forecasting to standardize the challenge with a uniform evaluation protocol. In this paper, we introduce a prototype of EpiBench which is currently running and accepting submissions for the task of forecasting COVID-19 cases and deaths in the US states and We demonstrate that we can utilize the prototype to develop an ensemble relying on fully automated epidemic forecasts (no human intervention) that reaches human-expert level ensemble currently being used by the CDC.


Sujets)
COVID-19
14.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.12.24.20248826

Résumé

We report insights from ten weeks of collaborative COVID-19 forecasting for Germany and Poland (12 October - 19 December 2020). The study period covers the onset of the second wave in both countries, with tightening non-pharmaceutical interventions (NPIs) and subsequently a decay (Poland) or plateau and renewed increase (Germany) in reported cases. Thirteen independent teams provided probabilistic real-time forecasts of COVID-19 cases and deaths. These were reported for lead times of one to four weeks, with evaluation focused on one- and two-week horizons, which are less affected by changing NPIs. Heterogeneity between forecasts was considerable both in terms of point predictions and forecast spread. Ensemble forecasts showed good relative performance, in particular in terms of coverage, but did not clearly dominate single-model predictions. The study was preregistered and will be followed up in future phases of the pandemic.


Sujets)
COVID-19
15.
arxiv; 2020.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2007.05180v2

Résumé

Forecasting the effect of COVID-19 is essential to design policies that may prepare us to handle the pandemic. Many methods have already been proposed, particularly, to forecast reported cases and deaths at country-level and state-level. Many of these methods are based on traditional epidemiological model which rely on simulations or Bayesian inference to simultaneously learn many parameters at a time. This makes them prone to over-fitting and slow execution. We propose an extension to our model SIkJ$\alpha$ to forecast deaths and show that it can consider the effect of many complexities of the epidemic process and yet be simplified to a few parameters that are learned using fast linear regressions. We also present an evaluation of our method against seven approaches currently being used by the CDC, based on their two weeks forecast at various times during the pandemic. We demonstrate that our method achieves better root mean squared error compared to these seven approaches during majority of the evaluation period. Further, on a 2 core desktop machine, our approach takes only 3.18s to tune hyper-parameters, learn parameters and generate 100 days of forecasts of reported cases and deaths for all the states in the US. The total execution time for 184 countries is 11.83s and for all the US counties ($>$ 3000) is 101.03s.


Sujets)
COVID-19 , Mort
16.
arxiv; 2020.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2006.02127v5

Résumé

Accurate forecasts for COVID-19 are necessary for better preparedness and resource management. Specifically, deciding the response over months or several months requires accurate long-term forecasts which is particularly challenging as the model errors accumulate with time. A critical factor that can hinder accurate long-term forecasts, is the number of unreported/asymptomatic cases. While there have been early serology tests to estimate this number, more tests need to be conducted for more reliable results. To identify the number of unreported/asymptomatic cases, we take an epidemiology data-driven approach. We show that we can identify lower bounds on this ratio or upper bound on actual cases as a factor of reported cases. To do so, we propose an extension of our prior heterogeneous infection rate model, incorporating unreported/asymptomatic cases. We prove that the number of unreported cases can be reliably estimated only from a certain time period of the epidemic data. In doing so, we construct an algorithm called Fixed Infection Rate method, which identifies a reliable bound on the learned ratio. We also propose two heuristics to learn this ratio and show their effectiveness on simulated data. We use our approaches to identify the upper bounds on the ratio of actual to reported cases for New York City and several US states. Our results demonstrate with high confidence that the actual number of cases cannot be more than 35 times in New York, 40 times in Illinois, 38 times in Massachusetts and 29 times in New Jersey, than the reported cases.


Sujets)
COVID-19
17.
arxiv; 2020.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2004.11372v3

Résumé

Accurate forecasts of COVID-19 is central to resource management and building strategies to deal with the epidemic. We propose a heterogeneous infection rate model with human mobility for epidemic modeling, a preliminary version of which we have successfully used during DARPA Grand Challenge 2014. By linearizing the model and using weighted least squares, our model is able to quickly adapt to changing trends and provide extremely accurate predictions of confirmed cases at the level of countries and states of the United States. We show that during the earlier part of the epidemic, using travel data increases the predictions. Training the model to forecast also enables learning characteristics of the epidemic. In particular, we show that changes in model parameters over time can help us quantify how well a state or a country has responded to the epidemic. The variations in parameters also allow us to forecast different scenarios such as what would happen if we were to disregard social distancing suggestions.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche